Sains Malaysiana 52(7)(2023): 1955-1966

http://doi.org/10.17576/jsm-2023-5207-05

 

Genomic Analysis of a Novel Antarctic Bacterium, Cryobacterium sp. SO2 Provides Insights into its Genomic Potential for Production of Antimicrobial Compounds

(Analisis Genom Bakteria Antartika Baharu, Cryobacterium sp. SO2 Memberi Cerapan tentang Potensi Genomnya untuk Pengeluaran Sebatian Antimikrob)

TEOH, C.P.1, LAVIN, P.2, GONZÁLEZ-ARAVENA, M.3 & WONG, C.M.V.L.1*

1Biotechnology Research Institute, Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah, Malaysia

2Departamento de Biotecnologia, Facultad de Ciencias del Mar y Recursos Biologicos, Universidad de Antofagasta, 601 Avenida Angamos, Antofagasta 1270300, Chile

3Instituto Antártico Chileno, Plaza Muñoz Gamero 1055, Punta Arenas, Chile

 

Received: 17 February 2023/Accepted: 19 June 2023

 

Abstract

A novel strain of Cryobacterium designated as SO2, was isolated from the Antarctic. Hence, this study was undertaken to gain further insight into the antimicrobial compounds and secondary metabolites produced by Cryobacterium sp. SO2. It was found that strain SO2 is a Gram-positive that exhibits an irregular rod shape, which formed yellow to orange pigmented colonies on semi-solid media. Strain SO2 grows at temperatures ranging from 4 to 25 ºC. It has a complete genomic size of 4.097 Mb. SO2 has a DNA G+C content of 68.43%, and genomic annotation showed that the genome contained 3,862 CDS, 10 rRNA, 55 tRNA and 1 tm-RNA. Phylogenetic and OrthoANI analysis suggested Cryobacterium sp. strains SO1, N22, TMB1-8, LW097, TMN39-1, C. zongtaiiTMN-42, C. arcticumPAMC27867 and C. soli GCJ02 as its closest phylogenetic neighbour. Genome annotation shows that strain SO2 confers β-lactamase class A, cephalosporin-C deacetylases, and 27 drug-resistance encoding genes, and allows resistance to ceftazidime. Functional annotation identifies 28.74% of predicted genes are of unknown functions. Genome mining indicates that there are six putative secondary metabolite gene clusters in strain SO2. They are made up of RRE-containing, terpene, beta-lactone, T3PKS, NAPAA, and 2dos. This finding shows strain SO2 harbours genes that may be involved in the production of compounds with antibacterial and antioxidant activities.

 

Keywords: Complete genome; Cryobacterium sp.; drug-resistant; psychrotolerant; secondary metabolite gene cluster

Abstrak

Strain baharu Cryobacterium yang ditetapkan sebagai SO2 telah dipencilkan dari Antartika. Oleh itu, kajian ini dijalankan untuk mendapatkan pemahaman yang lebih mendalam mengenai sebatian antimikrob dan penghasilan metabolit sekunder oleh Cryobacterium sp. SO2. Didapati bahawa strain SO2 adalah Gram-positif yang mempamerkan bentuk rod yang tidak teratur, yang membentuk koloni berpigmen kuning hingga oren pada media separa pepejal. Strain SO2 tumbuh pada suhu antara 4 hingga 25 ºC. Saiz genomnya yang lengkap adalah 4.097 Mb. Strain SO2 mempunyai kandungan G+C DNA sebanyak 68.43% dan anotasi genom menunjukkan terdapatnya 3,862 CDS, 10 rRNA, 55 tRNA dan 1 tm-RNA. Analisis filogenetik dan OrthoANI mencadangkan Cryobacterium sp strain SO1, N22, TMB1-8, LW097, TMN39-1, C. zongtaii TMN-42, C. arcticum PAMC27867 dan C. soli GCJ02 merupakan jiran filogenetik terdekat. Anotasi genom menunjukkan bahawa strain SO2 mengandungi β-laktamase kelas A, cephalosporin-C deacetylases dan 27 gen kerintangan dadah dan menyebabkan kerintangan strain SO2 terhadap ceftazidime. Anotasi kefungsian mengenal pasti 28.74% gen yang diramalkan mempunyai fungsi yang tidak diketahui. Perlombongan genom strain SO2 menunjukkan terdapatnya enam kluster gen metabolit sekunder. Merekaterdiri daripada RRE, terpena, beta-lakton, T3PKS, NAPAA dan 2dos. Penemuan ini menunjukkan strain SO2 mengandungi gen yang mungkin terlibat dalam aktiviti antibakteria dan antioksidan.

 

Kata kunci: Cryobacterium sp.; genom lengkap; kerintangan dadah; kluster gen metabolit sekunder; psikrotoleran

REFERENCES

Bajerski, F., Ganzert, L., Mangelsdorf, K., Lipski, A. & Wagner, D. 2011. Cryobacterium arcticumsp. nov., a psychrotolerant bacterium from an Arctic soil. International Journal of Systematic and Evolutionary Microbiology 61(8): 1849-1853.

Bakermans, C. 2012. Psychrophiles: Life in the cold. In Extremophiles: Microbiology and Biotechnology, edited by Anitori, R.P. Poole: Caister Academic Press. pp. 53-60.

Bentley, S.D., Chater, K.F., Cerdeño-Tárraga, A.M., Challis, G.L., Thomson, N.R., James, K.D., Harris, D.E., Quail, M.A., Kieser, H., Harper, D. & Bateman, A. 2002. Complete genome sequence of the model actinomycete Streptomyces coelicolor A3 (2). Nature 417(6885): 141-147.

Bérdy, J. 2005. Bioactive microbial metabolites. The Journal of Antibiotics 58(1): 1-26.

Centers for Disease Control and Prevention (CDC). 2013. Antibiotic Resistance Threats in the United States, 2013. Centers for Disease Control and Prevention, Office of Infectious Disease Antibiotic Resistance Threats in the United States, 2013, accessed 25th May 2023 https://www.cdc.gov/drugresistance/pdf/ar-threats-2013-508.pdf

Darling, A.E., Jospin, G., Lowe, E., Matsen, F.A., Bik, H.M. & Eisen, J.A. 2014. PhyloSift: phylogenetic analysis of genomes and metagenomes. PeerJ 2: e243. https://doi.org/10.7717/peerj.243

Dharmaraj, S. 2010. Marine Streptomyces as a novel source of bioactive substances. World Journal of Microbiology and Biotechnology 26(12): 2123-2139.

Guimarães, L.C., de Jesus, L.B., Viana, M.V.C., Silva, A., Ramos, R.T.J., Soares, S.C. & Azevedo, V. 2015. Inside the pan-genome-methods and software overview. Current Genomics 16: 245-252.

Hassan, S.S. & Shaikh, A.L. 2017. Marine actinobacteria as a drug treasure house. Biomedicine & Pharmacotherapy 87: 46-57.

Huerta-Cepas, J., Forslund, K., Coelho, L.P., Szklarczyk, D., Jensen, L.J., von Mering, C., & Bork, P. 2017. Fast genome-wide functional annotation through orthology assignment by eggNOG-Mapper. Molecular Biology and Evolution 34(8): 2115-2122.

Huerta-Cepas, J., Szklarczyk, D., Forslund, K., Cook, H., Heller, D., Walter, M.C., Rattei, T., Mende, D.R., Sunagawa, S., Kuhn, M., Jensen, L.J., von Mering, C. & Bork, P. 2016. eggNOG 4.5: A hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences. Nucleic Acids Research 44(D1): D286-D293.

Hunt, M., de Silva, N., Otto, T.D., Parkhill, J., Keane, J.A. & Harris, S.R. 2015. Circlator: Automated circularization of genome assemblies using long sequencing reads. Genome Biology 16(1): 294.

Kanehisa, M., Sato, Y. & Morishima, K. 2016. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. Journal of Molecular Biology 428(4): 726-731.

Kaulmann, A. & Bohn, T. 2014. Carotenoids, inflammation, and oxidative stress -implications of cellular signaling pathways and relation to chronic disease prevention. Nutrition Research 34(11): 907-929.

Koren, S., Walenz, B.P., Berlin, K., Miller, J.R., Bergman, N.H. & Phillippy, A.M. 2017. Canu: Scalable and accurate long-read assembly via adaptive k -mer weighting and repeat separation. Genome Research 27(5): 722-736.

Lee, I., Ouk Kim, Y., Park, S.C. & Chun, J. 2016. OrthoANI: An improved algorithm and software for calculating average nucleotide identity. International Journal of Systematic and Evolutionary Microbiology 66(2): 1100-1103.

Manivasagan, P., Kang, K.H., Sivakumar, K., Li-Chan, E.C.Y., Oh, H.M. & Kim, S.K. 2014. Marine actinobacteria: An important source of bioactive natural products. Environmental Toxicology and Pharmacology 38(1): 172-188.

Maoka, T. 2020. Carotenoids as natural functional pigments. Journal of Natural Medicines 74(1): 1-16.

Mata-Gómez, L.C., Montañez, J.C., Méndez-Zavala, A. & Aguilar, C.N. 2014. Biotechnological production of carotenoids by yeasts: An overview. Microbial Cell Factories 13(1): 12. https://doi.org/10.1186/1475-2859-13-12

Medema, M.H., Blin, K., Cimermancic, P., de Jager, V., Zakrzewski, P., Fischbach, M.A., Weber, T., Takano, E. & Breitling, R. 2011. AntiSMASH: Rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences. Nucleic Acids Research 39(2): W339-W346.

Murtey, M. & Ramasamy, P. 2016. Sample preparations for scanning electron microscopy - Life sciences. In Physics, Optics and Lasers: Modern Electron Microscopy in Physical and Life Sciences, edited by Janecek, M. & Kral, R. InTech. pp. 163-185.

Ōmura, S., Ikeda, H., Ishikawa, J., Hanamoto, A., Takahashi, C., Shinose, M., Takahashi, Y., Horikawa, H., Nakazawa, H., Osonoe, T., Kikuchi, H., Shiba, T., Sakaki, Y. & Hattori, M. 2001. Genome sequence of an industrial microorganism Streptomyces avermitilis: Deducing the ability of producing secondary metabolites. Proceedings of the National Academy of Sciences 98(21): 12215-12220.

Page, A.J., Cummins, C.A., Hunt, M., Wong, V.K., Reuter, S., Holden, M.T.G., Fookes, M., Falush, D., Keane, J.A. & Parkhill, J. 2015. Roary: Rapid large-scale prokaryote pan genome analysis. Bioinformatics 31(22): 3691-3693.

Paulus, C., Rebets, Y., Tokovenko, B., Nadmid, S., Terekhova, L.P., Myronovskyi, M., Zotchev, S.B., Rückert, C., Braig, S., Zahler, S., Kalinowski, J. & Luzhetskyy, A. 2017. New natural products identified by combined genomics-metabolomics profiling of marine Streptomyces sp. MP131-18. Scientific Reports 7(1): 42382. https://doi.org/10.1038/srep42382

Philippon, A., Slama, P., Dény, P. & Labia, R. 2016. A structure-based classification of class A β-Lactamases, a broadly diverse family of enzymes. Clinical Microbiology Reviews 29(1): 29-57.

Poirel, L., Corvec, S., Rapoport, M., Mugnier, P., Petroni, A., Pasteran, F., Faccone, D., Galas, M., Drugeon, H., Cattoir, V. & Nordmann, P. 2007. Identification of the novel narrow-spectrum β-Lactamase SCO-1 in Acinetobacter spp. from Argentina. Antimicrobial Agents and Chemotherapy 51(6): 2179-2184.

Price, M.N., Dehal, P.S. & Arkin, A.P. 2009. FastTree: Computing large minimum evolution trees with profiles instead of a distance matrix. Molecular Biology and Evolution 26(7): 1641-1650.

Reddy, G.S.N., Pradhan, S., Manorama, R. & Shivaji, S. 2010. Cryobacterium roopkundense sp. nov., a psychrophilic bacterium isolated from glacial soil. International Journal of Systematic and Evolutionary Microbiology 60(4): 866-870.

Seemann, T. 2014. Prokka: Rapid prokaryotic genome annotation. Bioinformatics 30(14): 2068-2069.

Sengupta, S., Chattopadhyay, M.K. & Grossart, H.P. 2013. The multifaceted roles of antibiotics and antibiotic resistance in nature. Frontiers in Microbiology 47(4). https://doi.org/10.3389/fmicb.2013.00047

Silva, L.J., Crevelin, E.J., Souza, D.T., Lacerda-Júnior, G.V., de Oliveira, V.M., Ruiz, A.L.T.G., Rosa, L.H., Moraes, L.A.B. & Melo, I.S. 2020. Actinobacteria from Antarctica as a source for anticancer discovery. Scientific Reports 10(1): 13870.

Simão, F.A., Waterhouse, R.M., Ioannidis, P., Kriventseva, E.V. & Zdobnov, E.M. 2015. BUSCO: Assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31(19): 3210-3212.

Spellberg, B. & Gilbert, D.N. 2014. The future of antibiotics and resistance: A tribute to a career of leadership by John Bartlett. Clinical Infectious Diseases 59(2): S71-75.

Suzuki, K.I., Sasaki, J., Uramoto, M., Nakase, T. & Komagata, K. 1997. Cryobacterium psychrophilum gen. nov., sp. nov., nom. rev., comb. nov., an obligately psychrophilic Actinomycete to accommodate “Curtobacterium psychrophilum” Inoue and Komagata 1976. International Journal of Systematic Bacteriology 47(2): 474-478.

Teoh, C.P., Wong, C.M.V.L., Lee, D.J.H., González, M.A., Najimudin, N., Lee, P.C. & Cheah, Y.K. 2018. Genome sequences of two cold-adapted Cryobacterium spp. SO1 and SO2 from Fildes Peninsula, Antarctica. Current Science 115(9): 1706-1708.

Ventola, C.L. 2015. The antibiotic resistance crisis: part 1: Causes and threats. P&T: A Peer-Reviewed Journal for Formulary Management 40(4): 277-283.

Ye, R., Xu, H., Wan, C., Peng, S., Wang, L., Xu, H., Aguilar, Z.P., Xiong, Y., Zeng, Z. & Wei, H. 2013. Antibacterial activity and mechanism of action of ε-poly-l-lysine. Biochemical and Biophysical Research Communications 439(1): 148-153.

Zhang, D.C., Wang, H.X., Cui, H.L., Yang, Y., Liu, H.C., Dong, X.Z. & Zhou, P.J. 2007. Cryobacterium psychrotolerans sp. nov., a novel psychrotolerant bacterium isolated from the China No. 1 glacier. International Journal of Systematic and Evolutionary Microbiology 57(4): 866-869.

Zhong, X., Tian, Y., Niu, G. & Tan, H. 2013. Assembly and features of secondary metabolite biosynthetic gene clusters in Streptomyces ansochromogenes. Science China Life Sciences 56(7): 609-618.

 

*Corresponding author; email: michaelw@ums.edu.my

 

 

 

 

 

 

 

 

 

previous