Sains Malaysiana 52(7)(2023):
1955-1966
http://doi.org/10.17576/jsm-2023-5207-05
Genomic Analysis of a Novel Antarctic Bacterium, Cryobacterium sp. SO2 Provides Insights into its Genomic Potential for Production
of Antimicrobial Compounds
(Analisis Genom Bakteria Antartika Baharu, Cryobacterium sp. SO2 Memberi Cerapan tentang Potensi Genomnya untuk Pengeluaran Sebatian Antimikrob)
TEOH, C.P.1, LAVIN,
P.2, GONZÁLEZ-ARAVENA, M.3 & WONG, C.M.V.L.1*
1Biotechnology Research Institute, Universiti Malaysia Sabah, 88400 Kota Kinabalu,
Sabah, Malaysia
2Departamento
de Biotecnologia, Facultad de Ciencias del Mar y Recursos Biologicos, Universidad de Antofagasta, 601 Avenida Angamos, Antofagasta
1270300, Chile
3Instituto Antártico Chileno, Plaza
Muñoz Gamero 1055, Punta Arenas, Chile
Received: 17 February
2023/Accepted: 19 June 2023
Abstract
A novel strain of Cryobacterium designated as SO2, was isolated from the Antarctic. Hence, this study was
undertaken to gain
further insight into the antimicrobial compounds and secondary metabolites
produced by Cryobacterium sp. SO2. It was found that strain SO2 is a
Gram-positive that exhibits an irregular rod shape, which formed yellow to
orange pigmented colonies on semi-solid media. Strain SO2 grows at temperatures
ranging from 4 to 25 ºC. It has a complete genomic size of 4.097 Mb. SO2 has a
DNA G+C content of 68.43%, and genomic annotation showed that the genome
contained 3,862 CDS, 10 rRNA, 55 tRNA and 1 tm-RNA. Phylogenetic and OrthoANI analysis
suggested Cryobacterium sp. strains SO1, N22, TMB1-8, LW097, TMN39-1, C. zongtaiiTMN-42, C. arcticumPAMC27867 and C.
soli GCJ02 as its closest phylogenetic neighbour.
Genome annotation shows that strain SO2 confers β-lactamase class A, cephalosporin-C
deacetylases, and 27 drug-resistance encoding genes, and allows
resistance to ceftazidime.
Functional annotation identifies 28.74%
of predicted genes are of unknown functions. Genome mining indicates that there are six
putative secondary metabolite gene clusters in strain SO2. They are made up of
RRE-containing, terpene, beta-lactone, T3PKS, NAPAA, and 2dos. This finding
shows strain SO2 harbours genes that may be involved
in the production of compounds with antibacterial and antioxidant activities.
Keywords: Complete genome; Cryobacterium sp.; drug-resistant; psychrotolerant; secondary metabolite gene cluster
Abstrak
Strain baharu Cryobacterium yang ditetapkan sebagai SO2 telah dipencilkan dari Antartika. Oleh itu, kajian
ini dijalankan untuk mendapatkan pemahaman yang lebih mendalam mengenai
sebatian antimikrob dan penghasilan metabolit sekunder oleh Cryobacterium sp.
SO2. Didapati bahawa strain SO2 adalah Gram-positif yang mempamerkan bentuk rod
yang tidak teratur, yang membentuk koloni berpigmen kuning hingga oren pada
media separa pepejal. Strain SO2 tumbuh pada suhu antara 4 hingga 25 ºC. Saiz
genomnya yang lengkap adalah 4.097 Mb. Strain SO2 mempunyai kandungan G+C DNA
sebanyak 68.43% dan anotasi genom menunjukkan terdapatnya 3,862 CDS, 10 rRNA,
55 tRNA dan 1 tm-RNA. Analisis filogenetik dan OrthoANI mencadangkan Cryobacterium sp strain SO1, N22, TMB1-8, LW097,
TMN39-1, C. zongtaii TMN-42, C. arcticum PAMC27867 dan C. soli GCJ02 merupakan jiran filogenetik terdekat. Anotasi genom menunjukkan bahawa
strain SO2 mengandungi β-laktamase kelas A, cephalosporin-C deacetylases dan 27 gen kerintangan dadah dan menyebabkan kerintangan strain SO2 terhadap
ceftazidime. Anotasi kefungsian mengenal pasti 28.74% gen yang diramalkan
mempunyai fungsi yang tidak diketahui. Perlombongan genom strain SO2
menunjukkan terdapatnya enam kluster gen metabolit sekunder. Merekaterdiri daripada RRE, terpena,
beta-lakton, T3PKS, NAPAA dan 2dos. Penemuan ini menunjukkan strain SO2
mengandungi gen yang mungkin terlibat dalam aktiviti antibakteria dan
antioksidan.
Kata kunci: Cryobacterium sp.; genom lengkap; kerintangan dadah; kluster gen
metabolit sekunder; psikrotoleran
REFERENCES
Bajerski,
F., Ganzert, L., Mangelsdorf,
K., Lipski, A. & Wagner, D. 2011. Cryobacterium arcticumsp. nov., a psychrotolerant bacterium from an Arctic soil. International
Journal of Systematic and Evolutionary Microbiology 61(8): 1849-1853.
Bakermans,
C. 2012. Psychrophiles: Life in the cold. In Extremophiles:
Microbiology and Biotechnology, edited by Anitori,
R.P. Poole: Caister Academic Press. pp. 53-60.
Bentley, S.D., Chater,
K.F., Cerdeño-Tárraga, A.M., Challis, G.L., Thomson,
N.R., James, K.D., Harris, D.E., Quail, M.A., Kieser,
H., Harper, D. & Bateman, A. 2002. Complete genome sequence of the model actinomycete Streptomyces coelicolor A3 (2). Nature 417(6885): 141-147.
Bérdy,
J. 2005. Bioactive microbial metabolites. The Journal of Antibiotics 58(1): 1-26.
Centers for Disease Control and
Prevention (CDC). 2013. Antibiotic Resistance Threats in the United States,
2013. Centers for Disease Control and Prevention, Office of Infectious
Disease Antibiotic Resistance Threats in the United States, 2013, accessed 25th May 2023 https://www.cdc.gov/drugresistance/pdf/ar-threats-2013-508.pdf
Darling, A.E., Jospin, G., Lowe, E., Matsen, F.A., Bik, H.M. & Eisen,
J.A. 2014. PhyloSift: phylogenetic analysis of
genomes and metagenomes. PeerJ 2: e243.
https://doi.org/10.7717/peerj.243
Dharmaraj,
S. 2010. Marine Streptomyces as a novel source of bioactive substances. World
Journal of Microbiology and Biotechnology 26(12): 2123-2139.
Guimarães,
L.C., de Jesus, L.B., Viana, M.V.C., Silva, A.,
Ramos, R.T.J., Soares, S.C. & Azevedo,
V. 2015. Inside the pan-genome-methods and software overview. Current Genomics 16: 245-252.
Hassan, S.S. & Shaikh, A.L.
2017. Marine actinobacteria as a drug treasure house. Biomedicine & Pharmacotherapy 87: 46-57.
Huerta-Cepas,
J., Forslund, K., Coelho, L.P., Szklarczyk,
D., Jensen, L.J., von Mering, C., & Bork, P.
2017. Fast genome-wide functional annotation through orthology assignment by eggNOG-Mapper. Molecular Biology and
Evolution 34(8): 2115-2122.
Huerta-Cepas,
J., Szklarczyk, D., Forslund,
K., Cook, H., Heller, D., Walter, M.C., Rattei, T.,
Mende, D.R., Sunagawa, S., Kuhn, M., Jensen, L.J.,
von Mering, C. & Bork, P. 2016. eggNOG 4.5: A hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and
viral sequences. Nucleic Acids Research 44(D1): D286-D293.
Hunt, M., de Silva, N., Otto, T.D., Parkhill, J., Keane, J.A. & Harris, S.R. 2015. Circlator: Automated circularization of genome assemblies
using long sequencing reads. Genome Biology 16(1): 294.
Kanehisa,
M., Sato, Y. & Morishima, K. 2016. BlastKOALA and GhostKOALA: KEGG
tools for functional characterization of genome and metagenome sequences. Journal
of Molecular Biology 428(4): 726-731.
Kaulmann,
A. & Bohn, T. 2014. Carotenoids, inflammation, and oxidative stress
-implications of cellular signaling pathways and relation to chronic disease
prevention. Nutrition Research 34(11): 907-929.
Koren,
S., Walenz, B.P., Berlin, K., Miller, J.R., Bergman,
N.H. & Phillippy, A.M. 2017. Canu:
Scalable and accurate long-read assembly via adaptive k -mer weighting and repeat separation. Genome Research 27(5): 722-736.
Lee, I., Ouk Kim, Y., Park, S.C. & Chun, J. 2016. OrthoANI: An
improved algorithm and software for calculating average nucleotide identity. International
Journal of Systematic and Evolutionary Microbiology 66(2): 1100-1103.
Manivasagan,
P., Kang, K.H., Sivakumar, K., Li-Chan, E.C.Y., Oh,
H.M. & Kim, S.K. 2014. Marine actinobacteria: An
important source of bioactive natural products. Environmental Toxicology and
Pharmacology 38(1): 172-188.
Maoka,
T. 2020. Carotenoids as natural functional pigments. Journal of Natural
Medicines 74(1): 1-16.
Mata-Gómez, L.C., Montañez, J.C., Méndez-Zavala, A. & Aguilar, C.N. 2014.
Biotechnological production of carotenoids by yeasts: An overview. Microbial
Cell Factories 13(1): 12. https://doi.org/10.1186/1475-2859-13-12
Medema,
M.H., Blin, K., Cimermancic, P., de Jager, V., Zakrzewski, P., Fischbach, M.A., Weber, T., Takano, E. & Breitling, R.
2011. AntiSMASH: Rapid identification, annotation and
analysis of secondary metabolite biosynthesis gene clusters in bacterial and
fungal genome sequences. Nucleic Acids Research 39(2): W339-W346.
Murtey,
M. & Ramasamy, P. 2016. Sample preparations for
scanning electron microscopy - Life sciences. In Physics, Optics and Lasers:
Modern Electron Microscopy in Physical and Life Sciences, edited by Janecek, M. & Kral, R. InTech. pp. 163-185.
Ōmura,
S., Ikeda, H., Ishikawa, J., Hanamoto, A., Takahashi,
C., Shinose, M., Takahashi, Y., Horikawa,
H., Nakazawa, H., Osonoe,
T., Kikuchi, H., Shiba, T., Sakaki,
Y. & Hattori, M. 2001. Genome sequence of an industrial microorganism Streptomyces avermitilis: Deducing the ability of producing
secondary metabolites. Proceedings of the National Academy of Sciences 98(21): 12215-12220.
Page, A.J., Cummins, C.A., Hunt, M.,
Wong, V.K., Reuter, S., Holden, M.T.G., Fookes, M., Falush, D., Keane, J.A. & Parkhill,
J. 2015. Roary: Rapid large-scale prokaryote pan
genome analysis. Bioinformatics 31(22): 3691-3693.
Paulus, C., Rebets,
Y., Tokovenko, B., Nadmid,
S., Terekhova, L.P., Myronovskyi,
M., Zotchev, S.B., Rückert,
C., Braig, S., Zahler, S., Kalinowski, J. & Luzhetskyy,
A. 2017. New natural products identified by combined genomics-metabolomics
profiling of marine Streptomyces sp. MP131-18. Scientific Reports 7(1): 42382. https://doi.org/10.1038/srep42382
Philippon,
A., Slama, P., Dény, P.
& Labia, R. 2016. A structure-based classification of class A
β-Lactamases, a broadly diverse family of enzymes. Clinical
Microbiology Reviews 29(1): 29-57.
Poirel,
L., Corvec, S., Rapoport,
M., Mugnier, P., Petroni,
A., Pasteran, F., Faccone,
D., Galas, M., Drugeon, H., Cattoir,
V. & Nordmann, P. 2007. Identification of the
novel narrow-spectrum β-Lactamase SCO-1 in Acinetobacter spp. from Argentina. Antimicrobial Agents and Chemotherapy 51(6):
2179-2184.
Price, M.N., Dehal, P.S. &
Arkin, A.P. 2009. FastTree: Computing large minimum
evolution trees with profiles instead of a distance matrix. Molecular
Biology and Evolution 26(7): 1641-1650.
Reddy, G.S.N., Pradhan, S., Manorama, R. & Shivaji, S.
2010. Cryobacterium roopkundense sp. nov., a psychrophilic bacterium isolated from
glacial soil. International Journal of Systematic and Evolutionary
Microbiology 60(4): 866-870.
Seemann,
T. 2014. Prokka: Rapid prokaryotic genome annotation. Bioinformatics 30(14): 2068-2069.
Sengupta,
S., Chattopadhyay, M.K. & Grossart, H.P. 2013.
The multifaceted roles of antibiotics and antibiotic resistance in nature. Frontiers
in Microbiology 47(4). https://doi.org/10.3389/fmicb.2013.00047
Silva, L.J., Crevelin,
E.J., Souza, D.T., Lacerda-Júnior, G.V., de Oliveira,
V.M., Ruiz, A.L.T.G., Rosa, L.H., Moraes, L.A.B.
& Melo, I.S. 2020. Actinobacteria from Antarctica as a source for anticancer discovery. Scientific Reports 10(1): 13870.
Simão,
F.A., Waterhouse, R.M., Ioannidis, P., Kriventseva,
E.V. & Zdobnov, E.M. 2015. BUSCO: Assessing
genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31(19): 3210-3212.
Spellberg,
B. & Gilbert, D.N. 2014. The future of antibiotics and resistance: A
tribute to a career of leadership by John Bartlett. Clinical Infectious
Diseases 59(2): S71-75.
Suzuki, K.I., Sasaki, J., Uramoto, M., Nakase, T. & Komagata,
K. 1997. Cryobacterium psychrophilum gen. nov., sp. nov., nom.
rev., comb. nov., an obligately psychrophilic Actinomycete to accommodate “Curtobacterium psychrophilum”
Inoue and Komagata 1976. International Journal of
Systematic Bacteriology 47(2): 474-478.
Teoh, C.P., Wong, C.M.V.L., Lee,
D.J.H., González, M.A., Najimudin, N., Lee, P.C.
& Cheah, Y.K. 2018. Genome sequences of two
cold-adapted Cryobacterium spp. SO1 and SO2
from Fildes Peninsula, Antarctica. Current Science 115(9): 1706-1708.
Ventola,
C.L. 2015. The antibiotic resistance crisis: part 1: Causes and threats. P&T:
A Peer-Reviewed Journal for Formulary Management 40(4): 277-283.
Ye, R., Xu, H., Wan, C., Peng, S.,
Wang, L., Xu, H., Aguilar, Z.P., Xiong, Y., Zeng, Z.
& Wei, H. 2013. Antibacterial activity and mechanism of action of
ε-poly-l-lysine. Biochemical and Biophysical Research Communications 439(1): 148-153.
Zhang, D.C., Wang, H.X., Cui, H.L.,
Yang, Y., Liu, H.C., Dong, X.Z. & Zhou, P.J. 2007. Cryobacterium psychrotolerans sp. nov.,
a novel psychrotolerant bacterium isolated from the
China No. 1 glacier. International Journal of Systematic and
Evolutionary Microbiology 57(4): 866-869.
Zhong,
X., Tian, Y., Niu, G. & Tan, H. 2013. Assembly
and features of secondary metabolite biosynthetic gene clusters in Streptomyces ansochromogenes. Science China Life Sciences 56(7): 609-618.
*Corresponding author; email: michaelw@ums.edu.my
|